CS 170 Computer Science 1: C++

Spring Semester 2017
Assignment 2

Due date: see syllabus

Course weighting 20%

File name:
2015_14_Spring_Assignment2_1_2_3.doc
Last revised:
Wednesday, 29 March 2017 at 20:03 A3/P3
This assignment requires you to solve four programming problems, and to implement your solution in C++. You will be assessed by your final delivery. This is an individual assignment. No collaboration is permitted.

Problems:

1. Function pointers
Write a function squareRoot that uses the Newton’s method of approximate calcu-lation of the square root of a number x. The Newton’s method guesses the square root in

 x

 iterations. The first guess is ------. In each iteration the guess is improved using

 2

 x

 guess + -----------

 guess

 ---------------------------- as the next guess.

 2

Your main program should prompt the user for the value to find the square root of (x) and how close the final guess should be to the previous guess (for example, 0.001), and pass these values to the squareRoot function. As a third argument of the function squareRoot pass an error processing function, to be called if the other arguments do not pass validation. For example the error processing function can set the wrong arguments to some default values, or ask the user for new values, or do some other appropriate action. Test squareRoot with at least two error processing functions.

[15 points]

2. Functions with variable number of arguments
Write a function write with variable number of arguments that takes a string first argument followed by any number of arguments of type double and prints on the screen a string formatted by the rules described below. The first argument may contain formats in curly braces of the form {index[:specifier]}, where the square brackets show optional parts (that is :specifier may be missing), and index is the sequence number of an argument of type double (starting from sequence number 0).

Rules for formatting: In the printed string the curly brackets and their content will be replaced by the argument with the given index, formatted according to the given format specifier. If the format specifier is missing, the argument will be printed with its default format. For example:

write("The number {0} is greater than {1}.", 5.0, -3.0);

will print

The number 5 is greater than -3.

write("There are no format specifiers here.");

will print

There are no format specifiers here.

The format specifiers and their meanings are listed in the following table

	Specifier
	Meaning
	Format
	Output for 1.62
	Output for 2.0

	none
	default
	{0}
	1.62
	2

	c
	currency
	{0:c}
	$1.62
	$2.00

	e
	scientific
	{0:e}
	1.620000e+000
	2.000000e+000

	f
	fixed point
	{0:f}
	1.620000
	2.000000

	i
	round to int
	{0:i}
	2
	2

NOTE: an overview of the C++ ios flags is available at http://www.cplusplus.com/reference/ios/ios_base/fmtflags/

Limitations: You may limit the maximum number of arguments your function can process to a certain value, for example 10.

Suggested extensions:

· add an optional alignment specification in the format , e.g., make the format of the form {index[,alignment][:specifier]}, where alignment is an integer specifying the width of the field in which the corresponding argument will be printed. If alignment is positive, align to the left, if it is negative, align to the right.

· Accept an optional integer after the specifier letter, specifying the required precision in the output. For example, {0:f2} will print the number 1.6234 as 1.62, but {0:f5} will print it as 1.62340.

 [35 points]

3. Recursive functions
Write a recursive function maximum that will return the largest element of a one-dimensional array passed to it as an argument.

Suggested extension: make a function template for your recursive algorithm.

 [15 points]

4. Arrays
Write a program that modifies an initial configuration according to the rules of the game “Game of Life”, specified below.

LIFE is an organism that lives in a discrete, two-dimensional world, which in your program should be represented by a two dimensional character array 80 characters wide by 22 characters high. Each cell of the array is capable of holding one LIFE cell. There are two types of LIFE cells: thin and fat. The configuration of the LIFE cells in the array evolves through births and deaths of LIFE cells. This occurs in steps called generations, implemented by replacing the whole array according to the following steps:

a. Each cell has four neighboring cells (directly above and below, to the left and to the right). To ensure this, you may leave the top and the bottom rows, and the leftmost and rightmost columns empty.

b. If an occupied cell does not have neighbors, or only has a single thin neighbor, it dies of loneliness. If an occupied cell has three neighbors and there is a fat member among them, or if it has four neighbors of any type, it dies of overcrowding.

c. If an empty cell has exactly two occupied neighbor cells of any type, there is a birth of a new cell of a randomly selected type to replace the empty cell.

d. Births and deaths are instantaneous and occur only at the change of a generation. Make your program generate and display the next generation when the user presses the Enter key (function getchar()is useful for this). A cell dying for whatever reason may help cause birth, but a newborn cell cannot resurrect a cell that is dying at the same generation change, nor can a dying cell prevent another cell from dying (e.g., by reducing the local population) at the same generation change.

Use an * or I to indicate a thin living cell, W or M to indicate a fat living cell, and a space to indicate a dead or empty cell. It is acceptable for the initial configuration to be specified in the program by array initialization.

[35 points]
Development Requirements

1. Constraints. Coding must use C++ streams for input and output and generate a executable file
2. Dependencies. You are encouraged to use global constants, but your program must not declare any global variables, whether of simple data types, structures, arrays, or streams.

3. Functions. Pay special attention to breaking down your solutions to multiple functions. Your functions should be cohesive – each function should do one thing, but do it well. There should be low coupling between functions – changing the body of one function should not require changing others. All communications between functions should be achieved through parameters and return values, and NOT through global variables.

4. Standards. Your programs must meet the programming standards for this course as described in Assignment1.

Delivery

All your source code files (.cpp and .h) and any data files (if applicable) must be placed in the directory X:\Dropoff\CS\ganchevg\CS170\Assignment2 in a subdirectory YourName. You should name the source files containing your main programs PROBLEM1.CPP, PROBLEM2.CPP, PROBLEM3.CPP and PROBLEM4.CPP.
NOTE: If for any of the problems these files are missing, (or incorrectly named or in the wrong directory) or the program will not compile and link correctly, I will not be able to grade your work for this problem. Please double-check this. Please do not submit whole Visual Studio projects or solutions!!

You should also submit in a paper or plastic folder with a standard cover sheet (file CoverSheet.doc in the course directory) with all fields filled in correctly, the following in this order:

A. Grading guide (supplied) with sections 1, 2 and 3 completed to show what you have done

B. For each problem, in this order:

· A structure chart showing the modular structure of your program

· Optionally, structure diagrams or pseudocode showing the algorithms design

· A test plan showing:

(a) Check-points, with a clearly indicated result (Y or N)

(b) Test data and results in a table with three columns:

· test input (printed)

· expected results (printed)

· the actual results of your testing written in by hand

(c) A brief analysis of any known errors, which the program still produces

· A printed copy of your source code. Use a fixed-width font to preserve indentation. The first page should list files used by the program (source, header, library and data, if applicable).

· Sample copies of any printed reports produced by your program (if applicable).

Grading Schedule

The assignment will be graded on an A to F scale of grades.

Work which barely meets the minimum requirements and either has problems with usability or readability or does not meet the programming standards will be graded D- to C. Work which shows a useable solution with all the minimum requirements and meets the programming standards will be graded C+ to B+. Work which in addition demonstrates initiative in design and implementation as evidenced by superior user interaction, additional functionality, robustness and reliability will be graded A- to A.

Grading Notes:

1. To get credit for a program feature, it must be coded, tested and documented correctly according to the given standards and be working in all respects.

A feature that is either not shown on the test plan as tested or does not work correctly will be given no credit.
Penalty: points will be deducted for a faulty feature that is shown on the test plan as working.

2. The grading criteria include functionality, non-functional requirements, documentation and development requirements as indicated on the grading guide. Pay special attention to function design.

Assignment 2 Grading Guide

Name and email:

 (write legibly your full name and email address)

1. Minimum requirements satisfied (check the boxes of problems solved)

· Problem 1

· Problem 2

· Problem 3

· Problem 4

2. Additional functionality (list extensions completed)

3. Documentation submitted (check boxes of items attached)

· Structure charts

· Structure diagrams or pseudocode (optional)

· Test plans

· Source code

· Printed reports (optional)

4. Non-functional requirements grading criteria

- screen layout

- user interaction

- data validation

5. Development requirements grading criteria

- program organization

- dependencies

- data structures

- function/method design

- program layout

- internal documentation

 Grade ____

